基于非对称圆弧 Y 分叉单元的多模光功率 分配器结构设计

李书林巧吴兴坤

(浙江大学现代光学仪器国家重点实验室光及电磁波研究中心,浙江杭州 310027)

摘要 采用光束传播法(BPM)获取一种全新的基于非对称 Y 分光单元的多模光功率分配器设计。针对光能量在 多模传输波导中分布不均的特点,引入了基于圆弧结构的非对称结构,从而实现了对波导中能量的平均分配。通 过对各设计参数与输出功率的关联分析,导出了一系列同多模功率分配器结构相关的公式。以此为基础确定了分 别对应于 62.5 μm,120 μm 波导宽度的 1×4,1×8 多模光功率分配器的结构及具体参数。其器件长度分别为 7.6 mm,21.7 mm。理论计算表明此两种器件在 1.31 μm 窗口具有极为均匀的分光性,对应的插入损耗为 6.05 dB 及 9.06 dB,器件的偏振相关损耗大约在 0.2 dB。

关键词 光学设计;光功率分配器;集成光器件;组件 中图分类号 TN256 **文献标识码** A **doi**: 10.3788/AOS201131.0323005

Design of Multimode Optical Power Splitter Based on Asymmetric Arc-Shaped Y Branch Unit

Li Shu Lin Qiao Wu Xingkun

(Research Center of Light and Electronagnetic Wave, State Key Laboratory of Modern Optical Instrumentations, Zhejiang University, Hangzhou, Zhejiang 310027, China)

Abstract Efforts are made to obtain a novel multimode optical power splitter based on asymmetric Y splitter by means of beam propagation method (BPM). As lack of uniformity for multimode light power in waveguides, a special asymmetric Y branch on curves is brought into the structure to reach an evenly divided power output. Relation between splitter parameters and the output power has been analyzed. A series of equations for the splitter structure design are obtained. Both 1×4 and 1×8 power splitter designs with a 62.5 μ m and 120 μ m waveguide width respectively are provided with an overall length of 7.6 mm and 21.7 mm, respectively. The calculation results show that these splitters exhibit an excellent splitting uniformity in 1.31 μ m window. The calculated insertion loss for the two designs are 6.05 dB and 9.06 dB with the polarization-dependent loss to be 0.2 dB.

Key words optical design; optical power splitter; integrated optical device; assembly **OCIS codes** 230.1360; 130.3120; 130.1750

1 引

言

作为集成光学光纤到户(FTTH)中的经典器件 结构,波导型功率分配器的设计及制作日趋成熟,商 业应用也有了较为完善的发展^[1~3]。该结构目前的 制作方式通常都基于光纤熔融以及离子交换等途 径^[4,5]。然而,前述相关研究大多仅限于普通的单模 器件^[6,7]。随着低成本光纤接入(FTTx)线路的开 发,局域网高速数据传输业务(LAN backbones)的 发展,以及全光路板间通信为代表的短距离光通信 应用^[8],多模功率分配器的增加促使该方面研究被 提上日程^[9,10]。

由于多模光源在功率传输模式上具有不确定 性^[11],使得对其进行光束均匀分配存在一定的难 度。在多模传输器件的研究方面,最为常见于已有

收稿日期: 2010-07-05; 收到修改稿日期: 2010-10-08

作者简介: 李 书(1983—),男,博士研究生,主要从事微光学以及应用光器件方面的研究。E-mail: liysue@163.com 导师简介: 吴兴坤(1961—),男,教授,博士生导师,主要从事集成波导通信器件应用方面的研究。

E-mail: xingkunwu@163.com

文献的是采用基于自成像原理的多模干涉(MMI) 块状形式,并且大多采用完全对称的结构形式^[12]。 本文以目前这种背景为出发点,通过光束传播方法 (BPM)研究一种非对称型Y分叉为基本单元的多 模光功率分配器的结构设计,以获得功率分配均匀 性好,同时又具有小的器件外观尺寸的全新结构 设计。

2 分配器结构设计

分配器设计的根本目的在于对输入光源进行逐 次均匀分配,从而在最终级实现每一端口 1/2" 输出 (n=1,2,3,…),其中 2" 为分光器件对应的输出端 口数目。遵循此原则,采用级联的方式来对分配器 结构进行规划。具体设计细节按逐级结构在下列段 落进行详细说明。

2.1 圆弧 Y 分叉单元研究分析

Y 形分叉结构就是功率分配器的设计中的关键 构建单元。与单模器件的要求不同,由于介质中传 输功率模式的非均匀分布,使其在面临光束分路时 表现出明显的与 Y 分叉的角度及长度参数的不确 定性,直接导致难于对输入光源实现强度均分。传 统的 Y 分叉一般都是以正、余弦曲线为两支的结构 要素,本文则采用更为简单的圆弧为结构部件来构 造 Y 形分叉。在 BeamProp 软件环境之下(系统条 件:光源 多模,输入功率强度为单位 1,波长 1.31 μm,介质/背景折射率差为 0.025),针对不同 的波导宽度下这一结构的功率分配表现进行了计算 分析。BeamProp 软件工具的算法原理来自于 BPM 理论,采用有限差分的模型来进行,在分析光的传输 强度上有着很高的精确度。

本文的 Y 形分叉直观示意在图 1(a)给出,其中

的要素包含前端直波导 k,以及作为两个输出端口 的圆弧 m,n。该 Y 分叉结构的决定因素为直波导 长度 L,m,n 的 半 径 R 以及 圆 心 角 β 。利用 BeamProp 里面的参数变量扫描功能,可以了解这 些因素对于输出功率的影响(为了简化研究,将前端 直波导 L 设定为 350 μ m,且在计算过程中仅记录左 支 m 的输出功率大小)。这里主要进行了两部分的 研究工作:1)圆心角一定(以 β =6°为例),半径值 R 对输出功率的影响,2)当 Y 形分支圆弧对应半径值 一定时(以半径 R=25 mm 为例),不同宽度波导条 件下,圆心角值 β 对输出功率的影响。

以上两部分的计算结果分别在图 1(b),(c)中 给出。从图1(b)中可以看到,在确定值的圆心角条 件下,单支输出功率随着半径值的改变而发生变化, 在该图中不难看出,对于不同的波导宽度条件,均存 在使单支输出为 0.5 的半径值,并且随着所用的波 导宽度值增大,实现功率均匀分配输出的半径区域 越宽,这一现象主要得益于光功率在宽波导中更为 分散而趋于均匀化;另一方面当分支圆弧半径值一 定时,对各不同宽度波导所作的计算结果进行研究, 得到如图 1(c)所示的输出曲线,发现圆心角度的变 化带来的功率跳动幅度对 62.5 µm 波导宽度为 2.3×10⁻³,90 µm 时为 3.64×10⁻³, 而120 µm波导 宽度条件下仅为1.27×10⁻³,在误差考虑范围之内 对功率输出并不会造成影响。针对特定的波导宽 度,影响分支输出的主要因素在干圆弧半径,而角度 不会对输出造成影响,通过细化扫描步长的方法便 能确定获得 1/2 功率输出的圆弧半径值,从而确定 一级输出分叉的具体参数。在该条件之下,一级分 叉也可视为一个3dB的多模功率分配器。

Fig. 1 (a) Structure of Y branch, (b) R versus left branch output power at a stable central angle,

(c) left branch output power versus β at a radius R

2.2 非对称 Y 分叉研究

在前面一级分叉研究工作的基础上,进行二级 的功率再分配。输入功率在第一级分叉进行均分之 后,虽然在数值强度上处于相等的状态,但是光能量 在单个波导中的分布并不均匀。因此,想要在这个 基础之上继续进行均分而获得 1/4 的功率输出,并 不能简单地依靠同第一级相似的对称 Y 分叉来实 现。在这里拟采用非对称的圆弧分叉来达成次级的 功率分配的目标,其基本结构如图 2(a)所示(仅给 出分配器左侧部分)。

次级分叉是基于第一级的输出端口的延续部分, 以一级输出端口作为其输入端。同样的,此处可以考 虑两种情况:1)次级分叉的左侧输出端是基于第一级 分叉的左支延续,其半径参数保持不变,而另外的右 侧输出端半径值确定,整个结构取决于Q的具体位 置,2)Q点的位置以及右支参数确定,整个结构取决 于左侧输出端的半径变化。需要提及的是,无论针对 哪种情况,Q为所涉及到三段圆弧的公共切点,且对 于左支弧的圆心角,可以自由设定,因为其大小不会 影响最终功率输出,QQ可用于调整最终的输出端口 间距,另外右侧输出端的最终走向为竖直方向。

以上面所述的研究内容为基础,便可以进行次 级的分叉设计确定。另外还要说明的是经过上一部 分的研究,一级分叉的圆弧半径值已经可以被确定 (此处针对 62.5 µm 选取数值 25950 µm)。在情况 1)当中,为了研究切点Q的变化对最终功率输出的 影响,选取一组右支半径值「25 mm, 30 mm, 35 mm,分次扫描角度 γ 的变化与右支输出的关 系,其结果如图 2(b)中所示。从图中可以看出,在 所选取的数个右支半径条件下,扫描曲线走向趋势 极为一致并且均存在γ值使得输出达到 0.25。针 对情况 2), 同样的一组右支半径数值 [25 mm,30 mm,35 mm]作为计算条件。选取角度 $\gamma = 5^{\circ}$,定 下Q的位置。将左输出支的半径数值设为变量,进 行扫描运算,结果曲线如图 2(c)所示。根据所得的 结果,可以看出,随着左支半径的不断增大,右支输 出功率呈下降趋势,与情况1)的研究相似的是,对 于每次的扫描均存在实现输出为 0.25 的半径数值。 从该计算结果分析,可以看出,在所研究的圆弧条件 下,只要调整 m₁,n₁ 的半径值,构造一个非对称的 分叉结构单元,即可实现两分支对上一级输出的再 次均匀分配,即获得1/4功率输出。

图 2 (a) 基于一级分叉输出的非对称 Y 形结构,(b)m₁ 与一级分叉圆弧半径相同以及不同数值的 n₁ 半径条件下, 切点 Q 变化与 n₁ 输出的关系,(c)γ=5°以及不同数值的 n₁ 半径条件,m₁ 的半径变化与 n₁ 输出的关系

Fig. 2 (a) Asymmetric Y structure based on the first branch output, (b) Q position versus n_1 output with m_1 radius being the same as the first branch arm at the situation of several n_1 radius values, (c) radius of m_1 versus n_1 output with $\gamma = 5$ at the situation of several n_1 radius values

2.3 分配器结构确定

基于前述部分对于分配器主要结构要素的研究 分析,便可以进行整个分配器的设计,从而确定其结构。此处先以 1×4 为例,进行结构端口分析。 图 3(a)所示为 1×4 分配器的结构组分(为了简化, 图中仅给出了上半侧)。其中包括了 4 段圆弧波导 (*a*,*b*,*c*,*d*与之对应的半径值为 R_1 , R_2 , R_3 , R_4)以及 分别与 *a*,*b*,*d* 相连接的 3 条直线型波导。每段圆弧 都与其相邻的圆弧通过相切而连接。设定圆弧 *a* 的 圆心角为θ,圆弧 c 对应的圆心角为Δ,则其终止角度 为θ+Δ,而对于 d 来说,其起始角度为θ+Δ,终止于 水平方向。根据图中的几何关系,可以获得内侧的输 出端口中心跨距 H₂ 可以由

$$H_2 = (R_1 + R_2)(1 - \cos \theta), \qquad (1)$$

来确定。

图 3(b)中给出的是针对 c,d 几何关系示意的 具体描绘,通过该关系确定最外侧输出端口与内侧 输出端的间距可以表示为

$$H_1 = R_3 \big[\cos \theta - \cos(\theta + \Delta) \big] +$$

$$R_4 [1 - \cos(\theta + \Delta)] - R_2 (1 - \cos\theta).$$
 (2)

对于一般的分配器应用来说,应该保证其端口间距均匀,于是有 H₁=2H₂。

而整个器件的长度为

$$L = L_1 + L_2 + L_3 + L_4, \qquad (3)$$

该关系式可以进一步表示为

$$L = L_1 + (R_1 + R_2)\sin\theta + L_4.$$
 (4)

通过上述对分配器基本构件的分析以及归纳, 并基于既得的理论条件为依据,具体的器件参数设 计便可以实现。

这里以 1×4 器件为代表,其设计的基本思想 是,根据某一特定要求的波导宽度以及输出端口间 距值,首先确定第一级分叉的圆弧半径参数 R_1 ,之 后选定一个次级分叉角度 θ (理论上来说,可以选取 任意值,但是出于整体结构考虑,通常选在 4°~5°左 右),通过(1)式计算得出数值 R_2 。继续在 BeamProp中进行扫描即可确定 R_3 的数值。接下 来,挑选任意的 Δ 数值,该数值的前提是不会超出 间距要求而使(2)式不成立或者无意义(R_4 <0),于 是便可以计算出所需要的最后一段圆弧 d 所需要 的半径参数及圆心角度。这样分配器的整个结构便 可以完全确定。

从设计理念中可以得知,由于中间某些参数的 可变性,此方法的结果产物可以有多种情况,也就是 说基于该方法的结构设计具有灵活多样性。而对于 更多端口数目的分配器(N≥3),其基本的设计思路 也是如此,同次级分叉的设计原理一样,仅仅需要在 次级分叉输出的基础之上进行再次级的输出分析, 值得注意的是此时的次级输出端口的中心跨距 H₁ 数值要根据实际的最终端口间距进行调整,但是前 面的关系等式仍然成立。

3 分配器具体参数以及单元输出分析

常见于局域网数据通信的光纤直径在 62.5~ 125 µm,针对这一应用需要实现更好的耦合,将主 要研究的波导宽度定在 62.5 μ m 作为典型(并不局限于这些宽度,也可根据实际的需要选取其他的数值以获得不同数量级的结构)。按照前部分的设计 原则,设计了一种波导宽度为 62.5 μ m,输出端口间 距为 400 μ m 的 1×4 多模功率分配器,另外在波导 宽度为 120 μ m,输出端口间距同样为400 μ m的条 件下对 1×8 分配器结构进行确定,用于对比。

在图 4 中给出了此两种分配器的各组成成分具 体参数值。在图中直波导直接用长度标注,单位为 毫米,对于圆弧,则给出其半径和圆心角的数值,二 者的单位分别为毫米、度。对这两种器件结构的最 终输出进行了理论分析,亦在图中给出其示意。由 图 4 可以看出,该方法所设计的分配器结构,在功率 的均匀分配上,有着十分优良的表现,计算的条件为 输入功率为1个单位,光源与端口耦合的效率为理 想状态,通过与输出端口对应的监视器来获取经过 分配后的分支功率大小。由上述方法获得二者的功 率分配均匀度的差异性都在 1%以内,理论的单端 口插入损耗的平均值分别为 6.05 dB 以及9.06 dB, 另外通过改变输入光源的偏振模式,可以对输出端 口的偏振相关损耗(PDL)进行计算。

根据公式 $l_{PDL} = lg(P_{maxe}/P_{min})$ 可以获取其值在 0.2 dB 左右。而在整个单元结构的长度上,前者为 7.6 mm而后者为 21.7 mm。

对于文中的理论模拟,该软件采用的是 FD-BPM 的算法思想,利用传输波的 Helmholtz 方程来 进行细化计算,拥有很高的近似度^[13]。而本文研究 的对象主要包括直线波导以及小角度圆弧波导,简 单且典型,其计算分析的精度是可以保证的。

4 结 论

本文以多模光功率分配器设计研究为出发点, 对圆弧 Y 分叉各结构参数对输出功率的关系进行 了细致分析。通过在次级结构加入非对称圆弧分叉 来实现对光功率强度的均匀分配输出。采用逐级展 开的方式对分配器各部分参数进行了深入研究。综

图 4 (a)1×4 多模分配器结构及各部分具体参数以及端口功率输出示意,(b)1×8 分配器各部分 具体参数以及端口功率输出示意

Fig. 4 (a) Structure of 1×4 multimode splitter with detailed parameters and its power output at port,

(b) structure of 1×8 splitter with detailed parameters and its power output at port

合出了分配器的构成公式,并根据以上的研究基础 确定了分别属于不同波导宽度条件下的4端口、8 端口多模功率分配器。理论计算表明本文所提出并 确定的分配器结构,在对多模光源的功率均匀分配 上可获得极为优秀的性能。该研究工作将对多模光 功率分配器的设计制作将起到有力的推动作用。

- 1 G. L. Bona. Integrated optical planar waveguide components[J]. Microsys. Technol., 2003, 9(5): 291~294
- 2 J. M. Ruano, A. Glidle, A. Cleary. Design and fabrication of a silica on silicon integrated optical biochip as a fluorescence microarray platform[J]. *Biosens. Bioelectron.*, 2003, 18(2-3): 175~184
- 3 S. Balslev, B. Bilenberg. Fully integrated optical systems for lab-on-a-chip applications[C]. SPIE, 2005, 5730: 211~217
- 4 Tang Xionggui, Liao Jinkun, Li Heping *et al.*. Design and analysis for novel asymmetric Y-branch waveguides [J]. Acta Optica Sinica, 2009, **29**(8): 2077~2081 唐雄贵, 廖进昆, 李和平等. 新型非对称 Y 分支波导设计与分

居礁页, ◎近比, 字和丁 寻. 新型非对称 1 万文波寻议计习力 析[J]. 光学学报, 2009, **29**(8): 2077~2081

5 Luo Wen, Tang Xionggui, Liao Jinkun. Design and analysis for a novel $1 \times N$ optical splitter[J]. *Chinese J. Lasers*, 2009, **36**(12): $95 \sim 98$

罗 文, 唐雄贵, 廖进昆 等. 新型 1×N 光功率分束器的设计与 分析[J]. 中国激光, 2009, **36**(12): 95~98

- 6 A. K. Das. Laser direct writing polymeric single-mode waveguide devices with a rib structure[J]. Appl. Opt., 2003, 7(42): 1236~1243
- 7 M. Olivero, M. Svalgaard. UV-written integrated optical 1×N splitters[J]. Opt. Express, 2006, 1(14): 162~170
- 8 Ni Wei, Wu Xingkun. Soft-lithography-based inter-chip optical interconnection circuit [J]. Acta Optica Sinica, 2007, 27 (5): 813~818

倪 玮,吴兴坤.基于软光刻的片间光学互连线路[J]. 光学学报,2007,27(5):813~818

- 9 R. Baets, M. J. Goodwin *et al.*. Multimode polymeric Y junctions for star couplers in backplane optical interconnect[J]. *Appl. Opt.*, 1997, 36(21): 5091~5096
- 10 D. R. Beltrami, J. D. Love, F. Ladouceur. Multimode planar devices[J]. Opt. Quant. Electron., 1999, 31(4): 307~326
- 11 Li Shu, Lin Qiao, Wu Xingkun. A novel compact softlithography based polymeric multimode power splitter[J]. Acta Optica Sinica, 2008, 28(6): 1062~1066
 李 书,林 巧, 吴兴坤. 基于软光刻的高聚物多模光功率分配 器[J]. 光学学报, 2008, 28(6): 1062~1066
- 12 M. H. Ibrahim, Shuhying Lee, N. M. Kassim *et al.*. Multimode interference optical splitter based on photodefinable benzocyclobutene (BCB 4024-40)... polymer[J]. *Opt. Engng.*, 2007, **46**(1): 013401(1-4)
- 13 BeamProp User Guide. http://www.cadfamily.com/download/ Optical/Rsoft/beamprop.pdf